我们的科学家实现了纳米材料界面的原位精确原子级控制
表面界面结构是决定纳米材料性能的关键因素。但这种界面是活跃的,如何调控它是当今科学界面临的一个重大挑战。
经过近5年的研究,浙江大学、中国科学院上海高等研究所、丹麦科技大学利用环境透射电子显微镜的原位表征和第一原理计算,首次提出并实现了界面活性位点的原子级精确原位调节,这对于从机理上实现材料、器件结构和功能的精确调节和设计具有重要意义。研究结果于1月29日在国际领先期刊"科学"上发表。
负载在二氧化钛表面的金颗粒是将一氧化碳转化为二氧化碳的重要催化剂,它们也是工业催化研究中常见的组合。浙江大学依靠现场环境电子显微镜进行催化反应实验。通过原子水平的原位表征,首次发现了两种主要现象:一是在催化反应过程中观察到金粒子的外延旋转,目视实验表明活性中心首次位于界面处。二是发现当一氧化碳催化剂停止时,金粒子神奇地回到原来的位置。这一次出现的催化剂旋转现象通常被认为是不可能的。
是什么使"不可能"变成"可能"?根据实验结果,中科院上海高等研究所的理论小组大胆地猜测,诱导粒子旋转的"罪魁祸首"是界面吸附的氧,并进行了一系列的第一性原理和纳米尺度热力学计算。结果表明,界面处于缺氧状态的粒子与二氧化钛载体紧密结合,失去了一定的吸氧能力,小角度的颗粒界面可以提供更多更好的氧吸附活性中心。为了更好地与吸附氧结合,适应高氧环境,粒子发生旋转。当界面氧被激活并与一氧化碳反应后,粒子回到原来的位置,以便与载体紧密结合。
近十年来的"原位研究"表明,纳米固体晶体材料远没有人们想象的‘硬’,而是比橡胶泥具有更多的原位可塑性。"研究人员解释道。因此,科研团队进一步提出了通过改变反应环境来精确调节界面的设计思想,并最终在原位电子显微镜实验中实现了这种设计。
-
北京耀中成功举办DSE课程说明会
-
银轮股份:站上液冷风口,“千亿事业”有望加速实现
-
ETC最新重要报告全面介绍全球建筑业排放状况和脱碳路径
-
Assembly任命Karen Ho为大中华区董事总经理,引领该地区增长
-
Quantinuum宣布具巨大商业潜力的生成式量子人工智能突破
-
AI 与基因组学进步为亚洲肺癌负担带来新希望
-
E Ink元太科技发布75吋E Ink Kaleido™ 3户外大型彩色电子纸广告牌
-
布鲁可携多IP系列产品亮相德国纽伦堡玩具展,持续推进全球化战略布局
-
森林城市再迎重磅利好,数字地位赋能区域发展
-
IBM 发布 2024 年第四季度业绩报告:软件业务双位数增长,自由现金流超全年预期